Mirror Representation for Modeling View-Specific Transform in Person Re-Identification
نویسندگان
چکیده
Person re-identification concerns the matching of pedestrians across disjoint camera views. Due to the changes of viewpoints, lighting conditions and camera features, images of the same person from different views always appear differently, and thus feature representations across disjoint camera views of the same person follow different distributions. In this work, we propose an effective, low cost and easy-to-apply schema called the Mirror Representation, which embeds the view-specific feature transformation and enables alignment of the feature distributions across disjoint views for the same person. The proposed Mirror Representation is also designed to explicitly model the relation between different view-specific transformations and meanwhile control their discrepancy. With our Mirror Representation, we can enhance existing subspace/metric learning models significantly, and we particularly show that kernel marginal fisher analysis significantly outperforms the current state-ofthe-art methods through extensive experiments on VIPeR, PRID450S and CUHK01.
منابع مشابه
People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملLearning Appearance Transfer for Person Re-identification
In this chapter we review methods that model the transfer a person’s appearance undergoes when passing between two cameras with non-overlapping fields of view. Whereas many recent studies deal with re-identifying a person at any new location and search for universal signatures and metrics, here we focus on solutions for the natural setup of surveillance systems in which the cameras are specific...
متن کاملExploiting Dissimilarity Representations for Person Re-identification
Person re-identification is the task of recognizing an individual that has already been observed over a network of video-surveillance cameras. Methods proposed in literature so far addressed this issue as a classical matching problem: a descriptor is built directly from the view of the person, and a similarity measure between descriptors is defined accordingly. In this work, we propose a genera...
متن کاملHuman Semantic Parsing for Person Re-identification
Person re-identification is a challenging task mainly due to factors such as background clutter, pose, illumination and camera point of view variations. These elements hinder the process of extracting robust and discriminative representations, hence preventing different identities from being successfully distinguished. To improve the representation learning, usually local features from human bo...
متن کاملView-Adaptive Metric Learning for Multi-view Person Re-identification
Person re-identification is a challenging problem due to drastic variations in viewpoint, illumination and pose. Most previous works on metric learning learn a global distance metric to handle those variations. Different from them, we propose a view-adaptive metric learning (VAML) method, which adopts different metrics adaptively for different image pairs under varying views. Specifically, give...
متن کامل